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Abstract—Eye tracking is a frequently used technique to collect
data capturing users’ strategies and behaviors in processing
information. Understanding how programmers navigate through
a large number of classes and methods to find bugs is important
to educators and practitioners in software engineering. However,
the eye tracking data collected on realistic codebases is massive
compared to traditional eye tracking data on one static page. The
same content may appear in different areas on the screen with
users scrolling in an Integrated Development Environment (IDE).
Hierarchically structured content and fluid method position
compose the two major challenges for visualization. We present
a dual-space analysis approach to explore eye tracking data
by leveraging existing software visualizations and a new graph
embedding visualization. We use the graph embedding technique
to quantify the distance between two arbitrary methods, which
offers a more accurate visualization of distance with respect to the
inherent relations, compared with the direct software structure
and the call graph. The visualization offers both naturalness and
readability showing time-varying eye movement data in both
the content space and the embedded space, and provides new
discoveries in developers’ eye tracking behaviors.

Index Terms—visualization, eye tracking, developer classifica-
tion, content space, embedded space

I. INTRODUCTION

The cognitive process (e.g., code reading and debugging)
of a software developer is often related to multiple factors
in software engineering (SE) such as programmer efficiency,
hierarchically organized software structures, relations among
source code, and integrated development environments (IDEs).
The knowledge of such processes can lead to many implica-
tions and benefits. For example, knowledge of efficient code
reading processes can be explicitly exposed to students in their
SE learning [1]-[3]. Knowing programmers’ code viewing
efficiency can also help project managers assign workload [3]
and intervene when they see patterns of stress or evaluate task
difficulties [4].

To understand such a cognitive process, SE researchers use
eye tracking devices to keep track of the psycho-physiological
states while performing debugging tasks using measurements
such as pupil dilation, fixation duration, and saccade fre-
quency [3]-[6]. By examining the time-varying data of par-
ticipants’ visual attention to particular content or IDE panes
on a screen, researchers seek to identify patterns from the
high-dimensional data across time, content, or screen.

Compared with the conventional analytics of eye tracking
data [7], [8], the increasing complexity of software introduces

unique challenges in exploring eye tracking data to identify
and compare individual user patterns. A software system
is typically organized in a hierarchical tree structure (e.g.,
the organization of classes and methods and the dependency
relations between these elements). In addition, the system
is associated with a call graph where each node represents
a method and each link represents a caller/callee relation.
Given a content space containing a software tree structure and
an associated call graph, different users may have different
strategies to explore this space for code reading or debugging
tasks. Also, note that using iTrace [5], [9] to collect eye
tracking data during bug fixes increases the complexity of
the visualization since we are no longer limited to short code
snippets. A common strategy is to directly visualize the soft-
ware tree structure [10], [11], and/or the call graph [12], and
superimpose eye trajectories which can intuitively display the
sequence of user focus in the content space and qualitatively
compare trajectories. However, these existing visualization
techniques cannot qualitatively reveal the distance among
trajectories as the inherent semantic information of a software
system may not be appropriately displayed in the visualization.

In this paper, we present a new dual-space approach to
enhancing the analysis of eye tracking data generated during
users’ viewing or debugging a software system. First, we
directly visualize the content space by simultaneously depict-
ing the hierarchical structure, the call graph, and user eye
trajectories for a software system. We leverage a radial layout
and an edge bundling algorithm to effectively depress visual
clutter. The visualization in the content space allows users to
intuitively examine the interplay between user trajectories, the
software hierarchy, and the call relations. Second, we create
an embedded space by transforming the call graph and/or
the tree structure via graph embedding. The visualization
of user trajectories in the embedded space allows us to
quantitatively measure distances among trajectories. We link
the visualizations in these two spaces and use our approach
with an eye tracking dataset of debugging processes [13].
Our approach facilitates the study of different user behaviors
through different views and reveals some discoveries that have
not been identified in existing work.

II. RELATED WORK

Though many studies consider software reviewing or de-
bugging using eye tracking data, they do not directly consider



the graph structure in contents [3], [4], [14]-[16]. As seen in
the work of Suliman et al. [17], a graph is used to model
the communication relationships between software developers
reading each other’s files and is what researchers try to learn
from eye tracking data. Our work focuses on understanding
and evaluating reading and navigation patterns through pro-
gram files and how such patterns reflect, interact with, and
deviate from the underlying graphical software pattern defined
by its tree structure and call relations. As our work spans two
domains, i.e, eye tracking and software domain, we review the
corresponding studies.

A. Eye Tracking Analytics

Fixations and saccades are two fundamental metrics for
describing behaviors of eye movement. A complete sequence
of fixations and saccades is a scanpath [6]. There are two
major visualization tracks, direct visualization, and statistical
analysis. The major difference is whether it represents and
visualizes individual features (e.g., location, duration, and
gaze) directly or use summary statistics such as saccade
frequency to abstract individual features for statistical analysis.
Area of interest (AOI) is an important feature to capture
readers’ comprehension patterns. Formally, an AOI can be any
user-defined area that is quantified by fixation and saccade
data. How researchers define their AOI may not be explicit
and can be very different [3], [15].

1) Direct visualization: Direct visualizations put fixation
circles, color, and/or saccade lines directly over the content
and give a user-friendly overview of gaze patterns. It is widely
used in various areas not limited to software [6], such as
application stores [18], info-graphics design [19]. The content-
focus overlay plot [1], [3], [14], [20] exploits the uniformity
between contents and screen, i.e, that contents are static and
fixed to a specific location on the paper, screen or objects. It
is straightforward that the distance in contents can be directly
represented by their position on a page or screen. In this plot,
we cannot infer about user viewing pattern along time. We
cannot distinguish from a user gazing less frequently for a
longer duration from another gazing more frequently but for
a shorter time.

A timeline flow visualization can remedy this deficiency.
Sharif et al. use a line and time coordinate to plot the fixation
points in time [1]. This visualization gives the false impression
that there is no meaningful reading time because it shows
only fixation points rather than duration specific to each line.
To overcome this shortness, Clark and Sharif introduced the
skyline visualization, which shows a user’s duration of fixation
and saccade in time [14]. This visualization gives a clear
correspondence between the focus in content with the length
of horizontal line signifying duration corresponding to that
content. This work follows the direction pointed by Clark
and Sharif and studies scan patterns in reference to control
structures and programs with greater length and size.

2) Statistical analysis: The statistical analysis direction
considers patterns in the features of interest to explain the
variance between groups who succeed and groups who failed

the tasks. Typical research questions focus on whether code
fixation time, focus on the specific type of code (e.g. logical,
declaration, and loops) [15], behaviors such as switching win-
dows, or using particular IDE panes (e.g. variable, console, or
code) [3] or regression rate [21] makes a significant predictor
of debugging success. While these studies yield important
insights as to what features characterize efficient code readers,
it is insufficient to treat coding as natural text. If we compare
method declarations and syntax to vocabularies of source
code, the structure is the grammar of source code and is
also essential for code comprehension. Since it is difficult
to quantify structure statistically, we adopt a visualization
method to examine how different participants interact with the
structure of source code.

B. Software Visualization

Researchers propose many metaphors to visualize hierar-
chical or tree software structures. For example, Andrian et
al. [10] present a 3D representation for software structures.
Wettel et al. [11] visualize large-scale software systems as
a city. Holten presents an aesthetic visualization to overcome
the current issues associated with clustering in the rendering of
large complex graphs [12]. A software program with classes,
dependencies, and call relations can be represented as a graph
with inclusion relations and adjacency relations. In related
work [22], Mabakane designed a visualization of the call
graph to help identify performance bottlenecks in the execution
of a parallel program. A limitation of these visualization
approaches is that the distance between nodes, which are
usually perceived as the length of the curve connecting the
nodes, are mostly suggestive of connectivity. In other words,
one longer curve does not mean that the distance between
a pair of nodes is longer than another pair of nodes with a
shorter curve. The requirement of distance measure in our
software visualization drives for a more meaningful graph
representation, where the distance between the nodes actually
captures their semantic distance in the software systems.

III. APPROACH

A. Design Requirements

The requirements from the domain experts on analyzing eye
tracking data on source code mostly include:

R1. Identify user behavior according to their scanpath.
Visualizations can help qualitatively understand how users
read and navigate through the content space of both hierar-
chical and adjacent relations to locate bugs. More specifically,
what patterns in visualization can reveal the success or failure
of bug locating, and any general differences between those
who located the bugs and those who did not.

R2. Interpret distance in both intuitive and meaningful
ways. The semantic distance between one method and another
method is not as straightforward as the Euclidean distance
between two points in a 2D plane. However, the visualization
should represent and layout methods in a meaningful way that
preserves the distances.



R3. Support deeper analysis by visualizing the time
dimension of scanning. Ideally, the visualization should inte-
grate multiple dimensions in addition to the content dimension:
the time dimension indicating sequences of fixations or sac-
cades, the duration of fixations, and/or the repetitive pattern
of back and forth reading. A reasonable assumption here is
that if a method m, calls another method m; which further
calls m., then a sequential saccade pattern of m,, msp, and
m,. may be more effective than a pattern of my, m,, and m..
The synthetic visualization with local visiting relation details
can be extended to study the transition of pattern in time with
similarly structured relations.

B. Design Challenges

We identify four major challenges in the existing visual-
ization approaches that lead to our current research efforts:
the absence of content structure, limited content space, lack
of meaningful distance representation in visualization, and
separation or omission of time data.

Existing literature highlighted the general trend for the
stimulus material or object using heatmap. The mapping of
color directly onto the focused content is straightforward and
works effectively when the material is a static web page or an
informatics design on a poster. However, if the content space
becomes much larger where there are tens or hundreds of text
files and thousands of lines per file, this direct mapping will
fall apart as the information becomes increasingly cluttered.

Another challenge with reading code is that the content has
its own structures. Typically, they follow a tree structure in
organizing the file systems and a graphical structure between
the method calls. The visualization of human’s reading focus
on larger and structured contents is not fully explored yet.

For traditional visualization of contents, given that the AOIs
are static or fixed to its screen or physical location, a distance
measure between AOIs corresponds directly to their physical
distances. However, for a software system rendered in an IDE,
the distance measure between a method m, in a file f;, and
another method m, in a file f; is not intuitive. Additionally,
suppose we have m, and m; both in a class c. and suppose
they are k lines apart from each other; however, m, calls
method m; at some point, we can no longer simply use &
as the sole measure of the distance between m, and m;. We
need a better distance measure capturing the cost of reading
in hierarchically structured content space.

Finally, the heatmap based visualization failed to suggest
the sequence of focus which can be important in reading
code. Readers who located an intermediate method to the bug
should be expected to locate the bug more easily than those
who did not. We can say safely that if a participant found
the intermediate bug location (on the bug path) but failed to
locate the bug, he/she may not be as experienced. However,
if a participant did not find any relevant methods, we are not
so sure about his/her chances of locating the bug. Sequences
like these suggest the reading efficiency, logical reasoning,
understanding of the structure and code, and familiarity with
the IDE.
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Fig. 1. Overview of our approach

C. Our Design

Figure 1 shows an overview of our approach. In this work,
we study eye tracking data for understanding user behaviors
during their code reading and debugging. We take the eye
tracking data and the software program as the inputs to derive
the trajectory data, the hierarchical tree structure, and the call
graph. The dataset is visualized using two linked views in
a content space and an embedded space to reveal different
patterns of user behaviors.

1) Data collection and processing: We used the Tobii X60
eye tracker to record 22 participants debugging 3 different
tasks, rated as either easy or difficult. Among the participants,
12 are labeled professional (i.e., the participants 1-12), and
10 are labeled novice (i.e., the participants 22-31). For each
participant, the eye tracking data records time, duration, line,
method, the file name of focus, pupil dilation, and coordinates
in the screen for each task. Notice that the time interval be-
tween recordings is not equal and the number of observations
differs across participants based on their reading. In this paper,
we extract the user trajectories from the eye tracking data. One
trajectory of a user consists of the sequence of methods that
the user read, and the time and the duration that the user spent
on a method.

We extract the hierarchical tree structure and the call
graph of the software system using java-callgraph, an open
source static analysis tool [23]. The tree structure is implied
in the name of methods. For example, the method name
root.net.sf.jabref. EntryTable.addSelectionListener()  suggests
that the class EntryTable is in the package root.net.sf.jabref
and the method is addSelectionListener(). The call graph
indicates the caller/callee relations among the methods. With
the hierarchical tree and call graph combined, we are then
ready to visualize users’ trajectories on the software structure.

2) Content space analysis: We leverage different schemes
to visualize the tree structure, the call graph, and the user
trajectories and reveal participants’ efficiency of reading in
the content space. We choose the D3 library [24] in our
implementation.

First, we use a common tree visualization method, the
radial layout [12], to visualize the hierarchical structure where
methods are visualized as leaves (rectangles along the inner
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Fig. 2. An example of content space visualization. (a), each small box along
the outer orbit represents a method, where details of the method are displayed
on hover. (b), each arc along the orbit represents a class. (c), the gray curves
are the edge bundling results of the call graph, where each edge connects a
caller and a callee. (d), the color curve corresponds to a user trajectory. The
color scalar indicates the scanning sequences.

circle) and their parents are visualized as outer arcs. Both
types of visual elements are arranged in a radial manner.
The detailed information of each method is displayed when
hovered over.

Second, we employ the hierarchical edge bundling method
[12] to visualize the call graph. The method uses piece-wise
cubic B-spline curves to draw edges, and similar shaped edges
are bundled together. Compared to other graph visualization
methods, the edge bundling method more effectively reduces
visual clutter and is more visually distinct. The bundling alpha
value is set to 1 in our implementation. A higher alpha value
gives a more bundling effect and renders a clearer and less
clustered visualization [12]. The curves of the call graph are
rendered in gray.

Third, we render user trajectories as curves laid over the
gray curves of the call relations in the software. We use a color
scale for the trajectories to indicate the scanning sequence with
a darker purple color as the beginning of the scan and lighter
green color as the end. Fewer colors in a trajectory indicate
that less transitions between methods occurred.

Figure 2 shows an example of our visualization in the
content space. We can see that the tree structure of the
software is suggested in the layout of the methods where the
methods of the same class are next to each other. Through the
superposition of a group of user trajectories and the calling
relation graphs with edge bundling, we can clearly see the
relationships between the user scanning sequences and the
caller/callee relations. We note that other tree visualization
techniques (e.g., rooted tree, radial tree, treemap, etc.) can be
also exploited with edge bundling [12] to visualize the content
space.

3) Embedded space analysis: The visualization results in
the content space can concisely and simultaneously show
the software hierarchical structure, call relations, and user
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Fig. 3. A simple example of embedding a graph (a) into 2D space according
to (b) the tree, (c) the call graph, and (d) the combination of the tree and the
call graph.

trajectories. However, it cannot be directly used to quanti-
tatively measure the distance between the visual metaphors
(e.g., the curves of the trajectories and the call graphs), as the
semantic meaning of the graphs is not fully preserved in the
visualization [25].

We employ graph embedding techniques to address this
issue. Graph embedding effectively converts a graph into a low
dimensional space where the graph’s structural information
and properties are maximally preserved [25]. In particular, we
use the node2vec [26] graph embedding method to map graphs
into a 2D embedded space while preserving the underlying
graph structure. This enables us to layout graph nodes (i.e.,
methods) with meaningful distances to each other.

The node2vec algorithm is semi-supervised and learns a
mapping of nodes to a low-dimensional feature space. For the
purpose of content space visualization, we decide to embed the
graph into a 2D space. The node2vec algorithm can preserve
graph neighborhoods of nodes in a 2D space such that two
neighborhood nodes in a graph can be mapped to two close
2D points. Different content spaces can be generated from
different graphs. In this work, we generate the content spaces
using all three graphs that we investigate: tree structure graph,
call structure graph and tree-call combined structure graph.

Figure 3 shows an example of embedded results using a
simple graph. The tree in Figure 3(a) represents a simple
hierarchical structure of a software program where the blue
curves represent the call relations. Figure 3(b) shows the result
using the tree structure. We can clearly see that the distances
among the nodes in the embedded space (b) exactly correspond
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Fig. 4. The visualization results of the software structure, the call graph,
and the trajectory for the participants 3 (a) and 6 (b) in the content space.
Participant 3 scans the methods in a local tree structure, as the ones in the blue
circles, while participant 6 read the code frequently along the call relations,
as the ones in the green circles. The red circles highlight a possible AOI
that is shared by 3 and 6 and is also across most participants (5 out of 7)
who successfully fixed the bug. The name of the intermediate bug location is
setValues () in the class GroupsPrefTab.

to the tree structure (a). For example, the nodes 3 and 4 are
the children of the node 1, and they are embedded closely in
(b). Similarly, the nodes 2 and 5 are close to each other in
(b), while the node 0 is roughly at the center of the space.
Figure 3(c) shows the result using the call graph, where we
can clearly see the nodes are distributed according to their
call relations (e.g., the group formed by the nodes 3, 4, and
5). In Figure 3(d), the placement of the nodes is generated
using the combined graph of the tree relations and the call
relations. For example, the nodes 3 and 4 are close to each
other as they have the same parent as well as the call relation.
The node 5 becomes farther away from 2 compared to the
results in Figure 3(b). This is because the node 5 has more
call relations to 3 and 4 even though 5 is the child of 2.
After we generate an embedded graph, we overlay user tra-
jectories on the embedded graph and also use juxtaposition for
comparison between different users. The user trajectories are
colored using the same scale in the content space visualization.
In this way, we can examine if a user would scan the code
according to the software structure and/or the call relations.

IV. RESULTS

We documented participants solutions for the bugs they
located and asked about their confidence levels, comments,
and evaluations of task difficulty. We also further evaluated
each solution to be either acceptable or not. For example, in
Task 2, we have valid data from 20 participants, 5 out of
11 professional participants successfully fixed the bug and 3
out of 9 novice participants also fixed the bug. We use this
evaluation as supplemental information as well as ground truth
for our analysis.

A. Content Space Results

The radial visualization presents an intuitive analysis of
the participants’ scanning pattern and whether they follow
the tree structure and/or call relations. For example, Figure 4
shows the visualization results for participants 3 and 6. We can

see that participant 3 mostly follows the tree structure when
reading methods in the same class, as represented by the more
aggregated local curves (e.g., the ones in the blue circles in
Figure 4 (a)). Alternatively, the participant 6 navigates through
the code seemingly following the call relations, as shown in
the curves in the green circles in Figure 4 (b), which appear
to overlap with the underlying software relations in grey lines.
Such uncertainty can be further examined with the embedded
call space (see Section IV-B1).

We can further identify a possible AOI, corresponding to
the method 228 GroupsPrefTab.setValues (), in the red circles
in both Figure 4 (a) and (b). Figure 5 gives the trajectories
for all 20 participants for task 2 [13]. Examining across the
participants in Figure 5, we can find that participants 3, 4, 5,
6, 11, 25, 29, and 30 all show this pattern in their trajectories
of which 80% of these participants who are professionals
successfully fixed bugs (the participant 11 did not fix the bug).
It is also interesting to observe that the participants 29 and
30 did not fix the bug even when they are in this AOIL. An
alternative interpretation is that getting to an intermediate bug
location will give professionals more of a guarantee to finding
the final bug location than novice participants. The participants
29 and 11 shared almost identical scanning patterns and may
have failed the task because too much focus was put on
the local files and did not relate to the bug problem well.
In addition, it is difficult to distinguish the participants 5
and 30 because they share almost the same pattern in this
visualization.

B. Embedded Space Results

1) Interpretation of embedded spaces: We embed the soft-
ware tree structure, the call graph, and the combined graph of
the tree and call relations to understand how the embedding
algorithm interprets the distance of the software methods.

To understand the effect of different graphs (i.e., the tree,
the call graph, and the combined graph) in graph embedding,
we first highlight the points of two methods getText () and
setText () in red in Figure 6. Similar to the get and set methods
in most programs, these two methods are also defined in the
same class and do not have direct call relations between them.
Intuitively, the distance between them should not be far as they
are semantically related even though there is no call relation.
The distance shown in the embedded space of the tree graph is
indeed close, as shown in Figure 6 (a). However, the distance
between the two becomes very far in the embedded space of
the call graph, as shown in Figure 6 (b). Figure 6 (c) shows
a medium distance in the embedded space of the combined
graph of tree and call relations.

Figure 7 offers a more complex example with a method call-
ing another both directly and indirectly where more relations
imply a closer distance and a shorter curve. For example, the
method 175 calls 163 directly and also indirectly through 171.
The method 171 calls 163 only directly. Therefore, the method
175 appears closer to 163 than 171. For the method 159, since
it calls 163 only indirectly, it shows as the most distant from
163 among the three methods. The embedded call graph gives
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Fig. 5. The visualization results of the software structure, the call graph, and the trajectory for all participants in the content space. The bottom color scale
is used for all participants, indicating starting time in deep purple and ending time in light green in the sequence of scanning. Our survey-based evaluation
suggests that the participants 3, 4, 5, 6, 9, 25, 27, and 31 have successfully located and fixed the bug.
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Fig. 6. The two methods getText () and setText () are in the same FieldEditor
class, and are colored in red. They are plotted in the tree graph (a), the call
graph (b), and the combined graph (c).
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Fig. 7. An example illustrating more complex call relations. The rank of
distance to the method 163 from smallest to largest is 175, 171, and 159.
This is because the method 175 features both direct and indirect calls to 163,
and the methods 171 and 159 feature a direct call and a indirect call to 163,
respectively.

a distance according to two principles implied here: 1) more
paths of calling means a closer distance; and 2) direct calling
is closer in distance than indirect calling.

To demonstrate how different graph visualization results
correspond to each other, we first circle eight groups of
methods, where each group is in the same subtree, as shown in
Figure 8 (a). The subtrees may be at different levels of depth.
Methods in the same subtree stay closely together as shown
in Figure 8 (b). Figure 9 shows an example of embedding the
calling graph. Two subgraphs 9 (a) and 9 (b) are plotted into
9 (c). The methods with close calling relations stays together
(within a or b) and those with distant calling relations (between
a and b) are further away from each other.

Figure 10 illustrates further with the participant 6’s trajecto-
ries. For the listed methods in the figure, the user’s trajectories
do not seem to be more effective in the call graph than those in
the tree graph. However, if we examine the distance between
the methods 67 and 72 and between the methods 239 and 253,
the distance given by the tree graph becomes much shorter.
Therefore, the participant 6 mainly follows the tree structure
while visiting these methods. The result provides a more clear
indication, compared with Figure 4(b).

2) General patterns: This section presents the results based
on the general trends observed visually among all participants.
The first question we ask is whether or not any trajectories
follow the call graph more dominantly. Figure 11 shows the
comparison results of the participants 1 and 11 using the
different embedded graphs. We can see the busy and long
lines in both Figure 11 (a) and Figure 11 (c), implying that
neither the call nor tree relations govern the participant 1’s
reading. By comparing Figure 11 (b) and (d), we can see that
participant 11 paid more attention to the call relations than
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Fig. 8. The visualization of embedded tree graph in correspondence with the
radial layout. Eight sample areas from (a) are selected. The methods within
a circle represent the leaf nodes in the same subtree. The methods in a circle
in (a) belong in the cluster circled in the same color in (b). These methods
are also nearest in (b). Note that the two blue clusters of methods in (a)
share the same depth and are one level deeper than the methods in the red
and yellow circles, which causes the blue circled methods are distinct in (b).
Similarly, the red and yellow circled methods share the same depth, but the
yellow circled methods are more than twice the size of the other circled ones.
The embedding algorithm can also capture the structure of the subtree by its
size and structure, and distinguish the yellow and red circled methods in (b).
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the tree relations. In addition, the participants 1 and 11’s call
distances are average when compared across all participants
as shown in Figure 13. We identify 7 participants featuring
this pattern. Considering both the tree and call relations as
shown in Figure 11 (e) and (f), we can observe seemingly more
distant lines in the participant 1. We no longer include analysis
of the combined graph in this subsection as the plotting
resembles a straight line and causes serious overlapping of
nodes and trajectories.

Figure 12 and Figure 13 show the trajectories from all
20 participants in the embedded tree graph and call graph,
respectively. Based on the visual comparison across all the
trajectories, we summarized a few general patterns as shown
in Figure 14. As shown in Figure 12, the tree graph in
the embedded space generally depicts a line-shaped plot of
blue points. We can identify a pattern ¢ that approximately
represents the middle cluster along the line-shaped plot. These
are the methods at the same depth level and with similar
community features. Using this pattern ¢ as the cutting point,
we can further identify the patterns It and rt that characterize
the left and right position of methods along the line-shaped
plot, respectively. For the call graph as shown in Figure 13,
the patterns show up are 11, which represents a group of
similar paths to the AOI (i.e, the method 228) and its close
neighborhood methods (e.g., 229 and 230 in Figure 8(a)). The
other ends of the paths are close the method 197.

Using the flag patterns in Figure 14, we characterize each
participant by whether they follow the patterns in Table I.
Note that rt is not included in Table I, as we found that rt
is not noticeably helpful to differentiate the participants. In
Table I the distance column, long, medium, and short represent
the participant’s trajectories in the tree graph in Figure 12.
Considering L as the longest distance in the distances between
any pair of methods, we categorize a trajectory according
to the longest distance x among methods traversed. The



TABLE I
IDENTIFYING GROUPS WITH FLAG PATTERNS. THE PARTICIPANTS MARKED WITH * HAVE SUCCESSFULLY LOCATED AND FIXED THE BUG.

Distance long medium short
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Fig. 9. The visualization of embed call graph in correspondence with the
radial layout. Upon clicking a method node in the radial visualization, the
methods with direct relations get highlighted as shown in (a) and (b). For
both (a) and (b), the methods with direct calling relations show as close to
each other in (c). But the distance of the methods between that in (a) and that
in (b) are much more distant.

categories are long (x > %), medium (% <z < %), and
short(x < %). We observed that out of 7 participants with short
trajectories, 3 were bug solvers. Note that the tiny trajectories,
such as ones of the participant 31, do not necessarily mean
poor code coverage as methods of different classes may be
clustered together as shown in Figure 8. However, if we also
consider the call graph which features fewer colors and nodes
visited, it is safe to conclude that a participant reads with less
code coverage. The participants in the group of short distances
in tree graph are most likely tree structure followers.

In general, we can see a few patterns characterizing all
trajectories in call graphs. For example, the trajectories of the

©239253

67 69 72
75

Fig. 10. An example translating the participant 6’s trajectories in the radial
layout (a, b) into the embedded spaces of the tree (c) and the call graph (d).
(c) reflects the tree relation between methods. Note that the distance between
175 and 69 are similar to that between 239 and 253 in (d), even through the
former looks much more distant than the later in radial layout.

(a) tree (b) tree

(c) call

(e) combined

(f) combined

Fig. 11. Comparison of the participants 1 (left) and 11 (right) in their reading
patterns across different embed graphs (i.e, the tree, the call graph, and the
combined graph). We can see clearly that the participant 11’s reading pattern
mostly follows the tree graph. However, the participant 1 does not show an
obvious pattern following either tree or call graph.

participants 2, 3, 4, 5, 7, 11, 25, 26, 29 and 30 are similar in
that they follow the flag pattern 11 as shown in Figure 14 (b).
Table I shows detailed results of grouping with different flag
patterns. Examining whether participants traverse 11 or focus
on the central location ¢ as shown in Figure 14 (a) gives a
pool of 13 participants, among whom 6 are the bug solvers.



Fig. 12. The visualization results of the tree graph. Some similar patterns in radial layout become more distinct. For example, we can quickly identify
participants 8, 9, 11, 27, 28, 29, and 31 read most likely following the tree structure.

Only the bug solvers 6 and 9 do not have either pattern.

C. Deeper into the patterns

With help of AOIs we can examine patterns in greater detail.
The above visual analysis yields a pool of 13 participants with
6 of them correctly fixing bugs, we still have 7 participants (2,
7, 11, 26, 28, 29, and 30) who are false positives. The method
228 can be visited from its close neighbor method 230 whose
caller method is 156. Alternatively, it can be visited from its
callee method 163 which is called by the methods 239 and
249. Looking at individual trajectory data and tracing how
each come to visit the intermediate AOI, we can further divide
participants into three groups: a) reasonable landers (3, 4, 5,
6, 11, 25, 29), b) backward travelers (30) who visited first
from callee to caller in the sequence of visits, and c¢) missed
travelers (2, 7, 26, 27, 28) who did not visit the AOI.

As we have expected, sequences in scanning can reflect the
developers’ reasoning. If we examine the participants 11, 25,
and 29 in Figure 5, though they have very similar patterns
related to the AOI around the method 228, the participant 25
who successfully fixed the bug started his reading in the area
distinct from the method 228 and searched his way into the
AOI at the end, whereas the other two were jumping right into
the AOI and then reading away from it and missed the bug.

In addition, the color changes of a trajectory offers more
insight. For example, the trajectories with more colors mean
that the participants (e.g., 1, 2, 4, 6, 7, 25) went through more
methods and potentially had better code coverage. For the
professional participants, their trajectories showed more colors
(i.e., from purple to red to green) implying that the scanpath
is less repetitive. In tree graphs, we verify that bug solvers
typically start with longer purple curves and ended with shorter
green curves, which indicates that they are working to narrow
down the space of searching.

D. Discussion

The embedded space results provide a more accurate de-
piction of distance, where neighborhood methods, according
to different relations, can be mapped to nearby 2D points.
Thus, we can compare user trajectories’ distances in a more
meaningful way. However, as we use a 2D embedded space,
certain trajectory segments can overlap. For example, although
several participants show similar patterns in Figures 12 and 13,
it is less direct to tell whether or not the methods are visited in
a similar sequence, thereby making it difficult to perceive more
detailed differences among trajectories. To address this issue,
we plan to investigate data in a 3D space [27] by introducing
a time axis additional to the 2D embedded space to generate
more comprehensive analytics results.



Fig. 13. The visualization results of the call graph, and the trajectories for all participants for in the embedded space using the same color scale as Fig. 5.
Some similar patterns in radial layout become more distinct. For example, if we compare the participant 30 with 5, we can see that the participant 30 1) is
less active in exploring the codes (less color in trajectory) and 2) shows a stroke (the tiny line in the bottom cluster) that are not found in other participants.

(b)

Fig. 14. Flag patterns from the tree graph (a) and the call graph (b). In (a),
we identify three patterns, It for left, ¢ for center, and rt for right. In (b), we
identify a line 11 that appears frequently among the trajectories.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we leverage multiple visualization schemes for
the analysis of participants’ patterns in reading and debugging
software programs. We visualize the software program with
the software’s tree and call graphs in the content and embedded
spaces and overlay participants’ trajectories on the graphs
using edge bundling techniques and color scales to indicate
the sequence of focus. Our visualization and clustering results
provide an intuitive and effective way of understanding reading
patterns, such as whether participants follow the tree or call
graph structure and how participants generally navigate to the
bug location and in what sequence. Our visualization uses
the eye trace of the software system as its use case, but it

has the potential of applications in other domains as well.
For example, in social science, we can visualize the pattern
of a person getting himself into a social network, suggesting
his social skills or personality. Similarly, we can investigate
the pattern of how information or news gets spread. In this
paper, we are primarily concerned with eye tracking data for
debugging patterns and efficiency.

In our future work, we would like to visualize multiple
perspectives, such as psycho-physiological features and screen
usage, in an integrated way. The possible extra measurements
(e.g., electrogastrographic data, body movement data, facial
expression, galvanic skin response, pupil dilation, etc.) may
be integrated into data analysis with user eye trajectories. In
this way, we can not only identify more holistic user patterns
but also gain a deeper understanding of the interplay between
software structures and user exploration and comprehension.
Finally, we plan on performing a user study to gain feedback
on the usefulness of this visualization to developers and
researchers.
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